```
On Threshold

\title{
On Threshold Behavior in Query Incentive Networks
}

Esteban Arcaute \({ }^{1}\) Adam Kirsch \({ }^{2}\) Ravi Kumar \({ }^{3}\)
David Liben-Nowell \({ }^{4}\) Sergei Vassilvitskii \({ }^{1}\)

\author{
\({ }^{1}\) Stanford University \({ }^{2}\) Harvard University \\ \({ }^{3}\) Yahoo! Research \(\quad{ }^{4}\) Carleton College
}

The 8th ACM Conference on Electronic Commerce EC'07
(1) Motivation
Trusted answers? Ask your friends!
Online friends? Use incentives!
(2) Model
Mathematical Formulation
Branching Process and Framework Objective
(3) Results
Previous Results
Our Results
Discussion
Current Research

\section*{Some Have Questions Others Answers}

Model introduced by Kleinberg and Raghavan [FOCS '05]
- Assume that a user, say \(u\), of a social network has a question (e.g. Where to find a good physician?)
- Suppose that some subset of users have an answer
- How would \(u\) retrieve an answer from those individuals?

\section*{An Answer or The Answer Differences}

To get an answer, \(u\) could:
- use a search engine; or
- ask friends.

What's the difference?
- Search engine: many answers but may not be reliable
- Friends: trusted answers but may not have any

Not enough friends? Reach friends' friends!
\(\Rightarrow\) "web of trust".
```

On Threshold

Ask Your Friends, Please

- Reaching friends' friends through incentives
- Offer payment for answers \hookrightarrow utility transfer
- Users act as strategic agents

Natural question: how much should u offer?

Informal Description Key Ideas to Model

Key features from Kleinberg and Raghavan's model.

- Nodes and answers:
- all answers are created equal
- each person, independently, has an answer with probability $\frac{1}{n}$
- Users aware of only local topology \hookrightarrow model with a random graph
- Providing incentives to answer, not creating a market

Network, Agents and Incentives

- Underlying network: complete d-ary tree $(d>1)$
- Root: special node with query (question)
- Realized network: each node has (independently) $0 \leq i \leq d$ children with distribution \mathcal{C} identities of nodes chosen uniformly at random

Network, Agents and Incentives

- Underlying network: complete d-ary tree $(d>1)$
- Root: special node with query (question)
- Realized network: each node has (independently) $0 \leq i \leq d$ children with distribution \mathcal{C} identities of nodes chosen uniformly at random

Completing the Model

For the incentives:

- parent node offers reward for answer to children
- if agent has an answer, communicates it to parent
- if there are many answers, choose one uniformly at random
- if providing answer, pay unit cost

Completing the Model

For the incentives:

- parent node offers reward for answer to children
- if agent has an answer, communicates it to parent
- if there are many answers, choose one uniformly at random
- if providing answer, pay unit cost

Formally, if a node is offered r and doesn't have an answer Tradeoff faced by the node: if it offers $f(r)$,

- amount it keeps $r-f(r)-1$
- probability of finding an answer in subtree increases with $f(r)$

Solution concept: Nash Equilibrium

On Threshold Behavior in Query Incentive Networks

Arcaute Kirsch
Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical

Formulation
Branching Process and Framework

Objective

Results

Previous Results

Schema of Incentives

offer r
offer $f(r)$
offer $f(f(r))$

On Threshold Behavior in Query Incentive Networks

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends!
Online friends? Use incentives!

Model

Mathematical

Formulation
Branching Process and Framework
Objective
Results
Previous Results

Schema of Incentives

offer r
offer $f(r)$
offer $f(f(r))$

Model as Branching Process Parameters

- \mathcal{C} distribution with support $\{0, \ldots, d\}$ let b be its expectation
- Realized network: realization of branching process according to \mathcal{C}
- identities of nodes chosen uniformly at random
$b>1 \Rightarrow$ infinite network with constant probability
- Average number of nodes in the first k layers:

$$
\frac{1-b^{k+1}}{1-b}=\Theta\left(b^{k}\right)
$$

- In $\Theta(\log n)$ layers, one answer with constant probability

Objective

- Given
- probability of success $1>\sigma>0$;
- the distribution \mathcal{C};
- the rarity of the answer n; and
- agents play a Nash Equilibrium given by the function f
- Find minimum offer $R_{\sigma, \mathcal{C}}(n)$ to get answer with probability at least σ
- Study dependency of $R_{\sigma, \mathcal{C}}(n)$ on \mathcal{C} and σ

Kleinberg and Raghavan Main Result

Setting:

- each child present independently at random $\hookrightarrow \mathcal{C}$ is a binomial distribution
- expected number of children b
- σ is a constant

Results:

- If $1<b<2$, then $R_{\sigma, \mathcal{C}}(n)=n^{\Omega(1)}$
- If $b>2$, then $R_{\sigma, \mathcal{C}}(n)=O(\log n)$

Phase transition for rewards, but nothing obvious happening from a structural perspective!

```
On Threshold

\section*{Summary of Results}

In this paper, we consider the robustness of Kleinberg and Raghavan's original result with respect to
- the distribution \(\mathcal{C}\) : result is robust; and
- the success probability \(\sigma\) : result is not robust

\section*{Robustness with respect to \(\mathcal{C}\)}

Given:
- \(\sigma=O(1)\)
- \(d=O(1)\)
- an arbitrary distribution \(\mathcal{C}\) with support \(\{0,1, \ldots, d-1, d\}\)

Theorem
For all \(\sigma, d\) and distributions \(\mathcal{C}\) as defined above, we have that
- If \(1<b<2\), then \(R_{\sigma, \mathcal{C}}(n)=n^{\Theta(1)}\)
- If \(b>2\), then \(R_{\sigma, \mathcal{C}}(n)=O(\log n)\)

\section*{High Probability Case: Vanishing Threshold}
- We want \(\sigma=1-o(1)\)

Given:
- \(\sigma_{0}=1-\frac{1}{n}\)
- \(d=O(1)\)
- an arbitrary distribution \(\mathcal{C}\) with support \(\{1, \ldots, d-1, d\}\)

Theorem
For all \(\sigma>\sigma_{0}, d\) and distributions \(\mathcal{C}\) as defined above, we have that
- If \(1<b<2\), then \(R_{\sigma, \mathcal{C}}(n)=n^{\Theta(1)}\)
- If \(b>2\), then \(R_{\sigma, \mathcal{C}}(n)=n^{\Theta(1)}\)

\section*{Discussion of Results}

Let \(\ell\) be the expected path length to an answer.
For \(\sigma\) constant:
- \(\ell=\Theta(\log n)\)
- \(2>b>1\), reward exponential in \(\ell\)
- \(b>2\), reward of same order as \(\ell\)

For \(\sigma \geq 1-\frac{1}{n}\) :
- \(2>b>1\), still exponential in \(\ell\)
- \(b>2\), also exponential in \(\ell\) but blowup occurs in the last \(O(\log \log n)\) steps
```

On Threshold

Current Research and Open Problems

Many open directions remain:

- Different network topology
- Aggregate answers

Most important open problem: probabilistic interpretation/proof of results.

On Threshold Behavior in Query
Incentive
Networks

Comments? Questions?

Arcaute
Kirsch
Kumar
Liben-Nowell
Vassilvitskii

Motivation
Trusted answers?
Ask your friends!
Online friends? Use incentives!

Model
Mathematical
Formulation
Branching Process and Framework

Thank you

Results

Previous Results
Our Results

