Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

On Threshold Behavior in Query Incentive Networks

*Esteban Arcaute*¹ Adam Kirsch² Ravi Kumar³ David Liben-Nowell⁴ Sergei Vassilvitskii¹

¹Stanford University

²Harvard University

³Yahoo! Research ⁴Carleton College

The 8th ACM Conference on Electronic Commerce EC'07

Outline

On Threshold Behavior in Query Incentive Networks

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

2 Model

Mathematical Formulation Branching Process and Framework Objective

3 Results

Previous Results Our Results Discussion Current Research

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends!

Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Some Have Questions Others Answers

Model introduced by Kleinberg and Raghavan [FOCS '05]

- Assume that a user, say *u*, of a social network has a question (e.g. Where to find a good physician?)
- Suppose that some subset of users have an answer
- How would *u* retrieve an answer from those individuals?

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends!

Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

An Answer or The Answer Differences

To get an answer, *u* could:

- use a search engine; or
- ask friends.

What's the difference?

- Search engine: many answers but may not be reliable
- Friends: trusted answers but may not have any

Not enough friends? Reach friends' friends! \Rightarrow "web of trust".

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends!

Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Ask Your Friends, Please

- Reaching friends' friends through incentives
- Offer payment for answers
 - $\hookrightarrow \text{utility transfer}$
- Users act as strategic agents

Natural question: how much should *u* offer?

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends!

Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Informal Description Key Ideas to Model

Key features from Kleinberg and Raghavan's model.

- Nodes and answers:
 - all answers are created equal
 - each person, independently, has an answer with probability ¹/_n
- · Users aware of only local topology
 - \hookrightarrow model with a random graph
- Providing incentives to answer, not creating a market

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Researc

Network, Agents and Incentives

- Underlying network: complete *d*-ary tree (*d* > 1)
- Root: special node with query (question)

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Researcl

Network, Agents and Incentives

- Underlying network: complete *d*-ary tree (*d* > 1)
- Root: special node with query (question)
- Realized network: each node has (independently)
 0 ≤ i ≤ d children with distribution C identities of nodes chosen uniformly at random

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Network, Agents and Incentives

- Underlying network: complete *d*-ary tree (*d* > 1)
- Root: special node with query (question)
- Realized network: each node has (independently)
 0 ≤ i ≤ d children with distribution C identities of nodes chosen uniformly at random

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Completing the Model

For the incentives:

- parent node offers reward for answer to children
- if agent has an answer, communicates it to parent
- if there are many answers, choose one uniformly at random
- if providing answer, pay unit cost

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Completing the Model

For the incentives:

- parent node offers reward for answer to children
- if agent has an answer, communicates it to parent
- if there are many answers, choose one uniformly at random
- if providing answer, pay unit cost

Formally, if a node is offered r and doesn't have an answer Tradeoff faced by the node: if it offers f(r),

- amount it keeps r f(r) 1
- probability of finding an answer in subtree increases with f(r)

Solution concept: Nash Equilibrium

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework

Results

Previous Results Our Results Discussion

Schema of Incentives

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework

Results

Previous Results Our Results Discussion Current Researc

offer roffer f(r)offer f(f(r))payoffs: r - f(r) - 1f(r) - f(f(r)) - 1f(f(r)) - 1

Schema of Incentives

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

Branching Process and Framework

Objective

Results

Previous Results Our Results Discussion Current Research

Model as Branching Process Parameters

- *C* distribution with support {0, ..., *d*} let *b* be its expectation
- Realized network: realization of branching process according to $\ensuremath{\mathcal{C}}$
- · identities of nodes chosen uniformly at random
 - $b > 1 \Rightarrow$ infinite network with constant probability
- Average number of nodes in the first *k* layers:

$$\frac{1-b^{k+1}}{1-b} = \Theta\left(b^k\right)$$

• In ⊖(log *n*) layers, one answer with constant probability

Objective

Behavior in Query Incentive Networks Arcaute Kirsch

On Threshold

Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation

and Framework

Objective

Results

Previous Results Our Results Discussion Current Research

Given

- probability of success $1 > \sigma > 0$;
- the distribution C;
- the rarity of the answer n; and
- agents play a Nash Equilibrium given by the function f
- Find minimum offer R_{σ,C}(n) to get answer with probability at least σ
- Study dependency of $R_{\sigma,\mathcal{C}}(n)$ on \mathcal{C} and σ

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Kleinberg and Raghavan Main Result

Setting:

- · each child present independently at random
 - $\hookrightarrow \mathcal{C}$ is a binomial distribution
- expected number of children b
- σ is a constant

Results:

- If 1 < b < 2, then $R_{\sigma,\mathcal{C}}(n) = n^{\Omega(1)}$
- If b > 2, then $R_{\sigma,C}(n) = O(\log n)$

Phase transition for rewards, but nothing obvious happening from a structural perspective!

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

In this paper, we consider the robustness of Kleinberg and Raghavan's original result with respect to

- the distribution \mathcal{C} : result is robust; and
- the success probability σ: result is not robust

Summary of Results

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion

Robustness with respect to $\ensuremath{\mathcal{C}}$

Given:

- σ = O(1)
- d = O(1)
- an arbitrary distribution C with support $\{0, 1, ..., d-1, d\}$

Theorem

For all σ , d and distributions C as defined above, we have that

- If 1 < b < 2, then $R_{\sigma,\mathcal{C}}(n) = n^{\Theta(1)}$
- If b > 2, then $R_{\sigma,C}(n) = O(\log n)$

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Proces and Framework Objective

Results

Previous Results Our Results Discussion Current Research

High Probability Case: Vanishing Threshold

• We want $\sigma = 1 - o(1)$

Given:

- $\sigma_0 = 1 \frac{1}{n}$
- *d* = *O*(1)
- an arbitrary distribution C with support $\{1, ..., d 1, d\}$

Theorem

For all $\sigma > \sigma_0$, d and distributions C as defined above, we have that

- If 1 < b < 2, then $R_{\sigma,C}(n) = n^{\Theta(1)}$
- If b > 2, then $R_{\sigma,\mathcal{C}}(n) = n^{\Theta(1)}$

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Proces and Framework Objective

Results

Previous Result Our Results

Discussion

Current Research

Discussion of Results

Let ℓ be the expected path length to an answer.

For σ constant:

- $\ell = \Theta(\log n)$
- 2 > b > 1, reward exponential in ℓ
- b > 2, reward of same order as ℓ

For $\sigma \geq 1 - \frac{1}{n}$:

- 2 > b > 1, still exponential in ℓ
- b > 2, also exponential in l but blowup occurs in the last O(log log n) steps

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Process and Framework Objective

Results

Previous Results Our Results Discussion Current Research

Current Research and Open Problems

Many open directions remain:

- Different network topology
- Aggregate answers

Most important open problem: probabilistic interpretation/proof of results.

Arcaute Kirsch Kumar Liben-Nowell Vassilvitskii

Motivation

Trusted answers? Ask your friends! Online friends? Use incentives!

Model

Mathematical Formulation Branching Proces and Framework Objective

Results

Previous Results Our Results Discussion

Current Research

Comments? Questions?

Thank you