## Local Two-Stage Myopic Dynamics for Network Formation Games

Esteban Arcaute<sup>1</sup> Ramesh Johari<sup>2</sup> Shie Mannor<sup>3</sup>

<sup>1</sup>Institute for Computational and Mathematical Engineering Stanford University

<sup>2</sup>Department of Management Science and Engineering Stanford University

<sup>3</sup>Department of Electrical and Computer Engineering McGill University (on leave at Technion)

The 4<sup>th</sup> International Workshop on Internet and Network Economics (WINE'08) Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Outline

Motivation

Model

Results

Conclusion

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivatior

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

**Goal:** Design *intuitive* dynamics that converge to good equilibria of Network Formation Games

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

**Goal:** Design *intuitive* dynamics that converge to good equilibria of Network Formation Games

Setting:

Data and transportation networks

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

**Goal:** Design *intuitive* dynamics that converge to good equilibria of Network Formation Games

Setting:

- Data and transportation networks
- Allocation Rules: flow based and sender based

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Mode

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

**Goal:** Design *intuitive* dynamics that converge to good equilibria of Network Formation Games

Setting:

- Data and transportation networks
- Allocation Rules: flow based and sender based
- Pairwise Nash Stability
- Strong Stability

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Mode

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

**Goal:** Design *intuitive* dynamics that converge to good equilibria of Network Formation Games

Setting:

- Data and transportation networks
- Allocation Rules: flow based and sender based
- Pairwise Nash Stability
- Strong Stability

Examples:

- The Internet at the ISP level
- Mobile ad-hoc networks

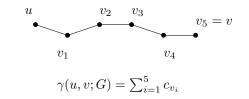
Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Mode

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics


#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Cost of a Network

### Assume G connected

•  $\gamma(u, v; G)$ : cost of sending one packet from u to v



Maintenance cost per edge of 2β > 0

Local Two-Stage Myopic Dynamics for Network Formation Games

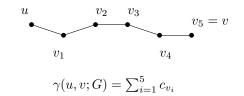
> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network

Who Should Pay? Static Game Solution Concept Dynamics


#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Cost of a Network

### Assume G connected

•  $\gamma(u, v; G)$ : cost of sending one packet from u to v



Maintenance cost per edge of 2β > 0

Cost of network G:

$$\Gamma(G) = 2\beta |E| + \sum_{u,v} \gamma(u,v;G)$$

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network

Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Who Should Pay? Allocation Rules

- Cost of edge evenly split among endpoints.
- For routing cost, two allocation rules:
  - 1. Sender based allocation rule  $Y_d$
  - 2. Flow based allocation rule Y<sub>f</sub>

Cost to node u:

$$C_d(u; G) = \beta d_u(G) + Y_d(u; G) = \beta d_u(G) + \sum_{v \neq u} \gamma(u, v; G)$$

$$C_f(u; G) = \beta d_u(G) + Y_f(u; G) = \beta d_u(G) + c_u f(u; G)$$

f(u; G) traffic forwarded or received by u. Note: routing policy given. Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Myerson Announcement Game

Nodes are selfish agents.

Edges result from bilateral agreements:

node u announces desired neighborhood

 $S_u \subseteq V \setminus \{u\}$ 

•  $uv = e \in E$  if and only if  $u \in S_v$  and  $v \in S_u$ .

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Myerson Announcement Game

Nodes are selfish agents.

Edges result from bilateral agreements:

node u announces desired neighborhood

 $S_u \subseteq V \setminus \{u\}$ 

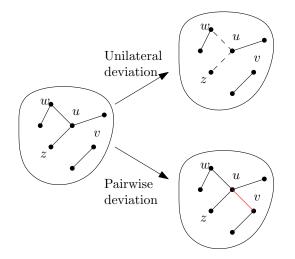
•  $uv = e \in E$  if and only if  $u \in S_v$  and  $v \in S_u$ .

Network results from strategic interactions between selfish agents.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation


#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## **Deviations Considered**

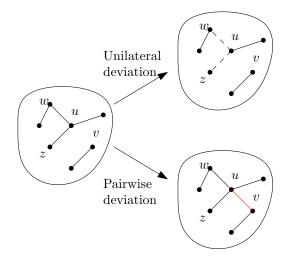


Nash network: no profitable unilateral deviation

#### Local Two-Stage Myopic Dynamics for Network Formation Games

Arcaute Johari Mannor

#### Motivation


#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## **Deviations Considered**



Nash network: no profitable unilateral deviation

Pairwise Nash stable network: both types of deviations

#### Local Two-Stage Myopic Dynamics for Network Formation Games

Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Why do we need dynamics?

Let  $V_{\min} = \{ u \in V | \forall v, c_u \leq c_v \}$ . Assume that, for all  $u, c_u = \Theta(1)$ . Then

## Theorem (Efficient Networks)

For  $\beta < c_{\min}$ , the complete graph is the only efficient network.

For  $\beta > c_{\min}$  only stars centered at a node  $u \in V_{\min}$  are efficient.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Why do we need dynamics?

Let  $V_{\min} = \{ u \in V | \forall v, c_u \leq c_v \}$ . Assume that, for all  $u, c_u = \Theta(1)$ . Then

## Theorem (Efficient Networks)

For  $\beta < c_{\min}$ , the complete graph is the only efficient network.

For  $\beta > c_{\min}$  only stars centered at a node  $u \in V_{\min}$  are efficient.

Theorem (Pairwise Nash Stable Networks) For all  $\beta > 0$ , all trees are PNS when using  $Y_f$ . For all  $\beta > n^2 c_{max}$ , all trees are PNS when using  $Y_d$ . Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Why do we need dynamics?

Let  $V_{\min} = \{ u \in V | \forall v, c_u \leq c_v \}$ . Assume that, for all  $u, c_u = \Theta(1)$ . Then

## Theorem (Efficient Networks)

For  $\beta < c_{\min}$ , the complete graph is the only efficient network.

For  $\beta > c_{\min}$  only stars centered at a node  $u \in V_{\min}$  are efficient.

Theorem (Pairwise Nash Stable Networks) For all  $\beta > 0$ , all trees are PNS when using  $Y_f$ . For all  $\beta > n^2 c_{max}$ , all trees are PNS when using  $Y_d$ .

### Price of anarchy is linear in n.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## **Two-Stage Local Dynamics**

Let  $\ell > 1$  be given. Let *G* be the network topology. Select an active node *u*. Then

- ► u performs two consecutive deviations in a round (called stages) with nodes in his ℓ-neighborhood:
  - First stage: unilateral deviation
  - Second stage: any type of deviation

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## **Two-Stage Local Dynamics**

Let  $\ell > 1$  be given. Let *G* be the network topology. Select an active node *u*. Then

- u performs two consecutive deviations in a round (called stages) with nodes in his l-neighborhood:
  - First stage: unilateral deviation
  - Second stage: any type of deviation

u minimizes its cost at the end of the round.

 All other nodes minimize their cost stage by stage. Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Why These Two-Stage Dynamics?

- Simple generalization of best-response dynamics;
- ► only require u to know its ℓ-neighborhood; and
- Allows for links to be added and removed in one round.
- "one step" look-ahead type of dynamics

#### Local Two-Stage Myopic Dynamics for Network Formation Games

Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Why These Two-Stage Dynamics?

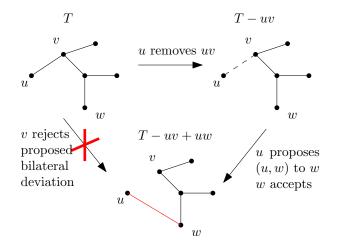
- Simple generalization of best-response dynamics;
- ► only require u to know its ℓ-neighborhood; and
- Allows for links to be added and removed in one round.
- "one step" look-ahead type of dynamics

 $\hookrightarrow$  Allows node *u* to create a favorable intermediate state so that *w* accepts *u*'s offer *even* if *w*'s cost increases overall. Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model


Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Why the "one-step look-ahead"? Intuition

Here C(w; T) < C(w; T - uv + uw) and C(u; T) > C(u; T - uv + uw).



Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Sender Allocation Rule Theorem

Assume that, for all u,  $c_u = \Theta(1)$ . Further, let  $\beta > n^2 c_{max}$  and  $G^{(0)}$  be a connected network. Then

- the dynamics converge almost surely;
- all fixed points of the dynamics:
  - 1. have constant diameter; and
  - 2. are pairwise Nash stable.

Note: constant diameter implies constant efficiency ratio

our dynamics select good equilibria!

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Sender Allocation Rule Theorem

Assume that, for all u,  $c_u = \Theta(1)$ . Further, let  $\beta > n^2 c_{max}$  and  $G^{(0)}$  be a connected network. Then

- the dynamics converge almost surely;
- all fixed points of the dynamics:
  - 1. have constant diameter; and
  - 2. are pairwise Nash stable.

Note: constant diameter implies constant efficiency ratio

our dynamics select good equilibria!

But, can we do better?

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

Results

#### Distance Model Generalized Distance Model Maximum Function Flow Model

## Homogeneous Agents Setting Preliminary Theorem

Assume that, for all u,  $c_u = 1$ . Further, let  $\beta > n^2$  and  $G^{(0)}$  be a connected network. Then

- the dynamics converge almost surely;
- all fixed points of the dynamics are efficient

Note: for such values of  $\beta$ , efficient outcomes are PNS:

our dynamics select efficient equilibria!

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function

## Homogeneous Agents Setting Preliminary Theorem

Assume that, for all u,  $c_u = 1$ . Further, let  $\beta > n^2$  and  $G^{(0)}$  be a connected network. Then

- the dynamics converge almost surely;
- all fixed points of the dynamics are efficient

Note: for such values of  $\beta$ , efficient outcomes are PNS:

our dynamics select efficient equilibria!

But, what about that strong assumption on  $\beta$ ?

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Model

In homogeneous agents setting, we can write

$$C_d(u; G) = \beta d_u(G) + \sum_{v \neq u} d(u, v; G).$$

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Model

In homogeneous agents setting, we can write

$$C_d(u; G) = \beta d_u(G) + \sum_{v \neq u} d(u, v; G).$$

We can generalize this model further:

$$C_d(u; G) = \beta d_u(G) + \sum_{v \neq u} g(d(u, v; G))$$

where g is a given strictly increasing function.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Model

In homogeneous agents setting, we can write

$$C_d(u; G) = \beta d_u(G) + \sum_{v \neq u} d(u, v; G).$$

We can generalize this model further:

$$C_d(u; G) = \beta d_u(G) + \sum_{v \neq u} g(d(u, v; G))$$

where g is a given strictly increasing function.

## Example (Connections Model)

Assume  $g(x) = \alpha^x$ , then we recover Jackson and Wolinsky's connections model.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

Motivation

#### Mode

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Strong Stability

A network *G* is *strongly stable* if no coalition of nodes can profitably deviate from *G*. We still assume  $\beta$  sufficiently large for redundant links not to be valuable.

Then, for any strictly increasing function g,

- all line networks are strongly stable; and
- all star networks are strongly stable.

the price of anarchy and the price of stability under both strong stability and PNS are the same! Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Convergence Theorem

We still assume  $\beta$  sufficiently large for redundant links not to be valuable.

For two general classes of functions g,

- the dynamics converge almost surely;
- all fixed points of the dynamics are efficient; and
- all fixed points are also strongly stable

our dynamics still select efficient equilibria!

Local Two-Stage Myopic Dynamics for Network Formation Games

> *Arcaute* Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Generalized Sender Based Setting Convergence Theorem

We still assume  $\beta$  sufficiently large for redundant links not to be valuable.

For two general classes of functions g,

- the dynamics converge almost surely;
- all fixed points of the dynamics are efficient; and
- all fixed points are also strongly stable

### our dynamics still select efficient equilibria!

Note that both  $g(x) = \alpha^x$  (connections model with  $\alpha > 1$ ) and g(x) = x (Corbo and Parkes model) satisfy *both* conditions for the dynamics to converge. Local Two-Stage Myopic Dynamics for Network Formation Games

> *Arcaute* Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Important Extension "max" Function

Assume the cost to a node *u* in *G* is

$$C(u; G) = \beta d_u(G) + \max_{v \in V} \left\{ d(u, v; G) \right\},$$

and  $\beta$  is large enough for redundant links not to be valuable.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

# Important Extension "max" Function

Assume the cost to a node *u* in *G* is

$$C(u; G) = \beta d_u(G) + \max_{v \in V} \left\{ d(u, v; G) \right\},$$

and  $\beta$  is large enough for redundant links not to be valuable.

- The price of anarchy and the price of stability under both PNS and strong stability are identical;
- the dynamics converge almost surely;
- the limit networks are strongly stable and of diameter at most three.

The price of anarchy of the dynamics is 3/2.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Mode

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Flow Allocation Rule Model and Results

Given  $\beta > 0$ , all trees are fixed points of our dynamics: we revise the utility model as in WINE'07 and WINE'08

 $\hookrightarrow$  we allow utility transfers through contracts

Under some reasonable assumptions about the utility transfers,

- the dynamics converge almost surely to;
  - PNS networks (sometimes with "good" efficiency); and
  - 2. to the most efficient PNS network if unique.

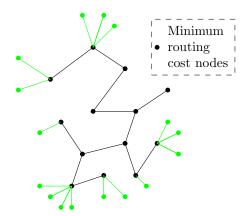
our dynamics sometimes select good equilibria.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model


Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

## Selecting "Good" Networks

What happens if we have several nodes of minimum routing cost?



In the limiting state, all traffic is routed by minimum routing cost nodes.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

For sender based allocation rule  $Y_d$ ,

- we always select good equilibria;
- if homogeneous agents, we select efficient equilibria even in a generalized setting under strong stability;

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

For sender based allocation rule  $Y_d$ ,

- we always select good equilibria;
- if homogeneous agents, we select efficient equilibria even in a generalized setting under strong stability; but
- require β to be sufficiently large to discourage redundant links.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

For sender based allocation rule  $Y_d$ ,

- we always select good equilibria;
- if homogeneous agents, we select efficient equilibria even in a generalized setting under strong stability; but
- require β to be sufficiently large to discourage redundant links.

For flow based allocation rule  $Y_f$ ,

- no restriction on  $\beta > 0$ ;
- we sometimes select good equilibria;
- we select the most efficient PNS network if unique;

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model

For sender based allocation rule  $Y_d$ ,

- we always select good equilibria;
- if homogeneous agents, we select efficient equilibria even in a generalized setting under strong stability; but
- require β to be sufficiently large to discourage redundant links.

For flow based allocation rule  $Y_f$ ,

- no restriction on  $\beta > 0$ ;
- we sometimes select good equilibria;
- we select the most efficient PNS network if unique; but
- we require utility transfers between nodes.

Local Two-Stage Myopic Dynamics for Network Formation Games

> Arcaute Johari Mannor

#### Motivation

#### Model

Cost of a Network Who Should Pay? Static Game Solution Concept Dynamics

#### Results

Distance Model Generalized Distance Model Maximum Function Flow Model