Deterministic Decentralized Search in Random Graphs

Esteban Arcaute1 \quad Ning Chen2 \quad Ravi Kumar3 \\
David Liben-Nowell4 \quad Mohammad Mahdian3 \\
Hamid Nazerzadeh1 \quad Ying Xu1

1Stanford University \quad 2University of Washington \\
3Yahoo! Research \quad 4Carleton College

The 5th International Workshop on Algorithms and Models for the Web-Graph WAW’07
Outline

Motivation

Model

Results

Open Problems
Small-World
Algorithmic Small-World

Milgram experiment: from Omaha to Boston
 six degrees of separation in Social Networks

Kleinberg’s observation: short paths exist and can be found
 algorithmic problem: decentralized search

Implicit observation: decentralized search using simple algorithms:
 - Milgram: professional and geographical information
 - Kleinberg: graph distance in some structure
Ordering Algorithms

We define a class of simple algorithms:

Definition (Ordering Algorithm)
Let σ, π be two orderings of V. Let $u \in V$, and $\Gamma(u)$ its neighborhood. $A_{\sigma,\pi}(u, \Gamma(u))$ is such that:

1. out of the nodes $v \in \{u\} \cup \Gamma(u)$ such that $\sigma(v) \geq \sigma(u)$,
2. select the maximum element with respect to π.
In words: \(A_{\sigma,\pi} \) never goes backwards according to the ordering \(\sigma \), and, subject to this restriction, makes the maximum possible progress according to \(\pi \).
Goals

- Provide a flexible definition of searchability.
- Prove that if a graph is searchable, then users can search with an ordering algorithm.
- Explore how one can find such an algorithm.
- Finally, prove a monotonicity result: if more edges are added, searchability is preserved.
Random Graph Model

Algorithms

Let P be a n by n matrix with entries in $[0, 1]$. Independently at random, we have

$$\text{Prob}[(i, j) \in E] = P_{ij}$$

generalization of the directed variant of Erdős–Rényi graphs.

Local search algorithms: deterministic and memoryless: given

- source destination pair (s, t),
- current vertex and its out-neighborhood
gives next vertex to visit deterministically.
Searchability

Definition

Let $d > 0$ be given.

Definition (Searchability)

A random graph $G(n, P)$ is d-searchable if, for all source-destination pairs (s, t), there exists a local search algorithm A such that,

1. A is deterministic and memoryless;
2. A finds a $s-t$ path with probability one; and
3. the expected length of the path is at most d.

The probability space is over the set of possible outcomes for the graph.
Characterization of d-Searchable Random Graphs

Theorem (Algorithmic Characterization)

$G(n, P)$ is d-searchable if and only if it is d-searchable using an ordering algorithm $A_{\sigma, \pi}$.

Interpretation: in a d-searchable social network, users can navigate using an ordering algorithm.

\hookrightarrow searchability definition compatible with “simple algorithm” observation.
Proof Sketch
Finding σ

Let A be such that $G(n, P)$ is d-searchable using A.

Let H be the union over all $s - t$ paths found by A with positive probability.

H can be interpreted as a directed graph over V.

To define σ from H, we

- prove that H is a DAG;
- prove that t is the only node with out-degree zero;
- σ is a topological ordering of H with t its largest element.
Proof Sketch

Finding π

Given σ and \mathcal{P} we define numbers r_u for every $u \in V$ recursively as follows:

1. Initialize all $r_u = \infty$; then
2. Start from t, set $r_t = 0$;
3. Go to the next highest vertex u with respect to σ,
 - Given its neighborhood $\Gamma(u)$, select v with minimal r_v.
 - Given this choice, let r_u be the expected distance from u to t
4. Continue until $u = s$.

We define π as follows: let $\pi(u) > \pi(v)$ if $r_u < r_v$.

Thus, out of all possible local search algorithms that route according to σ, we select the best one.
To complete the proof, we prove that

- The expected distance from any \(u \) such that \(\sigma(u) \geq \sigma(s) \) using algorithm \(A_{\sigma,\pi} \) is exactly \(r_u \); and
- \(r_u \) is a lower bound on the expected distance using algorithm \(A \).

The previous proof holds in a more general random graph model. We only need the out neighborhoods of distinct nodes to be independent.

\(\rightarrow \) our results also hold for long-range percolation graphs and other useful models.
Important Corollary

Theorem (Functional Characterization)

\[G(n, P) \text{ is } d\text{-searchable if and only if there is an ordering } \sigma \text{ on the nodes for which } r_s \leq d, \text{ where } r \text{ is defined as in Equation (1)}. \]

For a given \(\sigma \) and \(P \), we can efficiently calculate the numbers \(r_u \).

\(\leadsto \) we reduced searchability to a functional \textit{tractable} property of node orderings.
Monotonicity

Assume that $\mathcal{P}_1 \leq \mathcal{P}_2$, then we have that

Theorem

If $G(n, \mathcal{P}_1)$ is d-searchable, then $G(n, \mathcal{P}_2)$ is d-searchable. Further, the ordering algorithm defined for $G(n, \mathcal{P}_1)$ can also be used for $G(n, \mathcal{P}_2)$.

The proof follows from a mild modification of that of the previous theorem.

Interpretation: adding more links cannot “confuse” members of a social networks
Note on Monotonicity

Assume that we are given P_1, d and A such that $G(n, P_1)$ is d-searchable using A. Further, we have $P_2 \geq P_1$.

We know that $G(n, P_2)$ is d-searchable using A.

Remember: d is given, and thus is not to be confused with a function of the random graph model (such as the expected diameter).
Open Problems
Research Directions

- Characterization when positive probability of failure allowed
- Results for other types of algorithms:
 - Monotonicity result available for randomized algorithms with memory
 - Differences between memoryless and algorithms with memory - tradeoffs
- Find minimal searchable graphs
Thank you
More Details on Finding π

Given σ and \mathcal{P} we define numbers r_u for every $u \in V$ recursively as follows: $r_t = 0$, and for every $u \neq t$,

$$r_u = \begin{cases} 1 + \sum_{S \subseteq T_u, S \neq \emptyset} q_{u,S} \cdot \min_{v \in S} \{r_v\} & \text{if } q_{u,\emptyset} = 0 \\ \infty & \text{if } q_{u,\emptyset} > 0, \end{cases}$$

(1)

where $T_u := \{v : \sigma(v) > \sigma(u)\}$ and, for a set $S \subseteq T_u$, we write

$$q_{u,S} := \left(\prod_{v \in S} p_{uv} \right) \left(\prod_{v \in T_u \setminus S} (1 - p_{uv}) \right)$$

to denote the probability that the subset of nodes of T_u that are out-neighbors of u is precisely S.

We define π as follows: let $\pi(u) > \pi(v)$ if $r_u < r_v$.