Deterministic Decentralized Search in Random Graphs

*Esteban Arcaute*¹ Ning Chen² Ravi Kumar³ David Liben-Nowell⁴ Mohammad Mahdian³ Hamid Nazerzadeh¹ Ying Xu¹

¹Stanford University ²University of Washington

³Yahoo! Research ⁴Carleton College

The 5th International Workshop on Algorithms and Models for the Web-Graph WAW'07 Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Hesults Characterization Corollary Monotonicity

Outline

Motivation

Model

Results

Open Problems

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Hesults Characterization Corollary Monotonicity

Small-World Algorithmic Small-World

Milgram experiment: from Omaha to Boston → six degrees of separation in Social Networks

Kleinberg's observation: short paths exist *and* can be found

 \hookrightarrow algorithmic problem: decentralized search

Implicit observation: decentralized search using simple algorithms:

- Milgram: professional and geographical information
- Kleinberg: graph distance in some structure

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Ordering Algorithms

We define a class of simple algorithms:

Definition (Ordering Algorithm)

Let σ, π be two orderings of *V*. Let $u \in V$, and $\Gamma(u)$ its neighborhood. $A_{\sigma,\pi}(u, \Gamma(u))$ is such that:

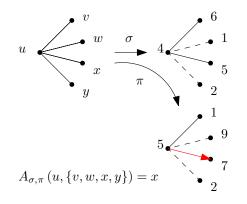
1. out of the nodes $v \in \{u\} \cup \Gamma(u)$ such that $\sigma(v) \ge \sigma(u)$,

2. select the maximum element with respect to π .

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal


Model

Random Graph Searchability

Results

Corollary Monotonicity

Illustration

In words: $A_{\sigma,\pi}$ never goes backwards according to the ordering σ , and, subject to this restriction, makes the maximum possible progress according to π .

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Goals

- Provide a flexible definition of searchability.
- Prove that if a graph is searchable, then users can search with an ordering algorithm.
- Explore how one can find such an algorithm.
- Finally, prove a monotonicity result: if more edges are added, searchability is preserved.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation

Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Random Graph Model Algorithms

Let \mathcal{P} be a *n* by *n* matrix with entries in [0, 1]. Independently at random, we have

 $\mathsf{Prob}[(i,j) \in E] = P_{ij}$

 \hookrightarrow generalization of the directed variant of Erdős–Rényi graphs.

Local search algorithms: deterministic and memoryless: given

- source destination pair (s, t),
- current vertex and its out-neighborhood

gives next vertex to visit deterministically.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model Random Graph Searchability

Results Characterization Corollary Monotonicity

Searchability Definition

Let d > 0 be given

Definition (Searchability)

A random graph $G(n, \mathcal{P})$ is *d*-searchable if, for all source-destination pairs (s, t),

there exists a local search algorithm A such that,

- 1. A is deterministic and memoryless;
- 2. A finds a s t path with probability one; and
- 3. the expected length of the path is at most d.

The probability space is over the set of possible outcomes for the graph.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Characterization of *d*-Searchable Random Graphs

Theorem (Algorithmic Characterization)

 $G(n, \mathcal{P})$ is d-searchable if and only if it is d-searchable using an ordering algorithm $A_{\sigma,\pi}$.

Interpretation: in a *d*-searchable social network, users can navigate using an ordering algorithm.

 \hookrightarrow searchability definition compatible with "simple algorithm" observation.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation

Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Proof Sketch Finding σ

Let *A* be such that $G(n, \mathcal{P})$ is *d*-searchable using *A*.

Let *H* be the union over all s - t paths found by *A* with positive probability.

H can be interpreted as a directed graph over V.

To define σ from *H*, we

- prove that H is a DAG;
- prove that t is the only node with out-degree zero;
- σ is a topological ordering of H with t its largest element.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Proof Sketch Finding π

Given σ and \mathcal{P} we define numbers r_u for every $u \in V$ recursively as follows:

- initialize all $r_u = \infty$; then
- start from *t*, set $r_t = 0$;
- go to the next highest vertex u with respect to σ ,
 - given its neighborhood $\Gamma(u)$, select v with minimal r_v .
 - given this choices, let r_u be the expected distance from u to t
- continue until u = s.

We define π as follows: let $\pi(u) > \pi(v)$ if $r_u < r_v$.

Thus, out of all possible local search algorithms that route according to σ , we select the best one.

Deterministic Decentralized Search in Random Graphs

Arcaute

Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation

Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Completing the Proof Important Remark

To complete the proof, we prove that

- The expected distance from any *u* such that σ(*u*) ≥ σ(*s*) using algorithm A_{σ,π} is exactly *r_u*; and
- *r_u* is a lower bound on the expected distance using algorithm *A*.

The previous proof holds in a more general random graph model. We only need the out neighborhoods of distinct nodes to be independent.

 \hookrightarrow our results also hold for long-range percolation graphs and other useful models.

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Important Corollary

Theorem (Functional Characterization)

 $G(n, \mathcal{P})$ is d-searchable if and only if there is an ordering σ on the nodes for which $r_s \leq d$, where r is defined as in Equation (1).

For a given σ and \mathcal{P} , we can efficiently calculate the numbers r_u .

 \hookrightarrow we reduced searchability to a functional *tractable* property of node orderings.

Deterministic Decentralized Search in Random Graphs

Arcaute

Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Monotonicity

Assume that $\mathcal{P}_1 \leq \mathcal{P}_2$, then we have that

Theorem

If $G(n, \mathcal{P}_1)$ is d-searchable, then $G(n, \mathcal{P}_2)$ is d-searchable. Further, the ordering algorithm defined for $G(n, \mathcal{P}_1)$ can also be used for $G(n, \mathcal{P}_2)$.

The proof follows from a mild modification of that of the previous theorem

Interpretation: adding more links cannot "confuse" members of a social networks

Deterministic Decentralized Search in Random Graphs

Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Assume that we are given \mathcal{P}_1 , *d* and *A* such that $G(n, \mathcal{P}_1)$ is *d*-searchable using *A*. Further, we have $\mathcal{P}_2 \geq \mathcal{P}_1$.

We know that $G(n, \mathcal{P}_2)$ is *d*-searchable using *A*.

Remember: *d* is *given*, and thus is not to be confused with a function of the random graph model (such as the expected diameter).

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Open Problems Research Directions

- Characterization when positive probability of failure allowed
- Results for other types of algorithms:
 - Monotonicity result available for randomized algorithms with memory
 - Differences between memoryless and algorithms with memory - tradeoffs
- Find minimal searchable graphs

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

Comments? Questions?

Thank you

Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity

More Details on Finding π

Given σ and \mathcal{P} we define numbers r_u for every $u \in V$ recursively as follows: $r_t = 0$, and for every $u \neq t$,

$$r_{u} = \begin{cases} 1 + \sum_{S \subseteq T_{u}, S \neq \emptyset} q_{u,S} \cdot \min_{v \in S} \{r_{v}\} & \text{if } q_{u,\emptyset} = 0\\ \infty & \text{if } q_{u,\emptyset} > 0, \end{cases}$$
(1)

where $T_u := \{v : \sigma(v) > \sigma(u)\}$ and, for a set $S \subseteq T_u$, we write

$$q_{u,S} := \left(\prod_{v \in S} p_{uv}\right) \left(\prod_{v \in T_u \setminus S} (1 - p_{uv})\right)$$

to denote the probability that the subset of nodes of T_u that are out-neighbors of u is precisely S. We define π as follows: let $\pi(u) > \pi(v)$ if $r_u < r_v$. Deterministic Decentralized Search in Random Graphs

> Arcaute Chen Kumar Liben-Nowell Mahdian Nazerzadeh Xu

Motivation Milgram and Kleinberg Ordering Algorithms Goal

Model

Random Graph Searchability

Results Characterization Corollary Monotonicity