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Small-World
Algorithmic Small-World

Milgram experiment: from Omaha to Boston
↪→ six degrees of separation in Social Networks

Kleinberg’s observation: short paths exist and can be
found

↪→ algorithmic problem: decentralized search

Implicit observation: decentralized search using simple
algorithms:

I Milgram: professional and geographical information
I Kleinberg: graph distance in some structure
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Ordering Algorithms

We define a class of simple algorithms:

Definition (Ordering Algorithm)
Let σ, π be two orderings of V .
Let u ∈ V , and Γ(u) its neighborhood.
Aσ,π(u, Γ(u)) is such that:

1. out of the nodes v ∈ {u} ∪ Γ(u) such that
σ(v) ≥ σ(u),

2. select the maximum element with respect to π.
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Illustration
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Aσ,π (u, {v, w, x, y}) = x

In words: Aσ,π never goes backwards according to the
ordering σ, and, subject to this restriction, makes the
maximum possible progress according to π.
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Goals

I Provide a flexible definition of searchability.
I Prove that if a graph is searchable, then users can

search with an ordering algorithm.
I Explore how one can find such an algorithm.
I Finally, prove a monotonicity result: if more edges

are added, searchability is preserved.
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Random Graph Model
Algorithms

Let P be a n by n matrix with entries in [0, 1].
Independently at random, we have

Prob[(i , j) ∈ E ] = Pij

↪→ generalization of the directed variant of Erdős–Rényi
graphs.

Local search algorithms: deterministic and memoryless:
given

I source destination pair (s, t),
I current vertex and its out-neighborhood

gives next vertex to visit deterministically.
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Searchability
Definition

Let d > 0 be given

Definition (Searchability)
A random graph G(n,P) is d-searchable if,
for all source-destination pairs (s, t),

there exists a local search algorithm A such that,
1. A is deterministic and memoryless;
2. A finds a s − t path with probability one; and
3. the expected length of the path is at most d .

The probability space is over the set of possible
outcomes for the graph.
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Characterization of
d-Searchable Random Graphs

Theorem (Algorithmic Characterization)
G(n,P) is d-searchable if and only if it is d-searchable
using an ordering algorithm Aσ,π.

Interpretation: in a d-searchable social network, users
can navigate using an ordering algorithm.

↪→ searchability definition compatible with
“simple algorithm” observation.
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Proof Sketch
Finding σ

Let A be such that G(n,P) is d-searchable using A.

Let H be the union over all s − t paths
found by A with positive probability.

H can be interpreted as a directed graph over V .

To define σ from H, we
I prove that H is a DAG;
I prove that t is the only node with out-degree zero;
I σ is a topological ordering of H with t its largest

element.
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Proof Sketch
Finding π

Given σ and P we define numbers ru for every u ∈ V
recursively as follows:

I initialize all ru = ∞; then
I start from t , set rt = 0;
I go to the next highest vertex u with respect to σ,

I given its neighborhood Γ(u), select v with minimal rv .
I given this choices, let ru be the expected distance

from u to t
I continue until u = s.

We define π as follows: let π(u) > π(v) if ru < rv .

Thus, out of all possible local search algorithms that route
according to σ, we select the best one.
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Completing the Proof
Important Remark

To complete the proof, we prove that
I The expected distance from any u such that

σ(u) ≥ σ(s) using algorithm Aσ,π is exactly ru; and
I ru is a lower bound on the expected distance using

algorithm A.

The previous proof holds in a more general random graph
model. We only need the out neighborhoods of distinct
nodes to be independent.

↪→ our results also hold for long-range percolation
graphs and other useful models.
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Important Corollary

Theorem (Functional Characterization)
G(n,P) is d-searchable if and only if there is an ordering
σ on the nodes for which rs ≤ d, where r is defined as in
Equation (1).

For a given σ and P, we can efficiently calculate the
numbers ru.

↪→ we reduced searchability to a functional tractable
property of node orderings.
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Monotonicity

Assume that P1 ≤ P2, then we have that

Theorem
If G(n,P1) is d-searchable, then G(n,P2) is d-searchable.
Further, the ordering algorithm defined for G(n,P1)
can also be used for G(n,P2).

The proof follows from a mild modification of that of the
previous theorem

Interpretation: adding more links cannot “confuse”
members of a social networks
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Note on Monotonicity

Assume that we are given P1, d and A such that G(n,P1)
is d-searchable using A. Further, we have P2 ≥ P1.

We know that G(n,P2) is d-searchable using A.

Remember: d is given, and thus is not to be confused
with a function of the random graph model (such as the
expected diameter).
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Open Problems
Research Directions

I Characterization when positive probability of failure
allowed

I Results for other types of algorithms:
I Monotonicity result available for randomized

algorithms with memory
I Differences between memoryless and algorithms

with memory - tradeoffs

I Find minimal searchable graphs
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Comments?
Questions?

Thank you
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More Details on Finding π

Given σ and P we define numbers ru for every u ∈ V
recursively as follows: rt = 0, and for every u 6= t ,

ru =


1 +

∑
S⊆Tu ,S 6=∅

qu,S ·min
v∈S

{rv} if qu,∅ = 0

∞ if qu,∅ > 0,

(1)

where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we
write

qu,S :=

(∏
v∈S

puv

) ∏
v∈Tu\S

(1− puv )


to denote the probability that the subset of nodes of Tu
that are out-neighbors of u is precisely S.
We define π as follows: let π(u) > π(v) if ru < rv .
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